Calcium dependent gene regulation
نویسندگان
چکیده
منابع مشابه
Gene regulation by voltage-dependent calcium channels.
Ca2+ is the most widely used second messenger in cell biology and fulfills a plethora of essential cell functions. One of the most exciting findings of the last decades was the involvement of Ca2+ in the regulation of long-term cell adaptation through its ability to control gene expression. This finding provided a link between cell excitation and gene expression. In this review, we chose to foc...
متن کاملRegulation of Calreticulin Gene Expression by Calcium
We have isolated and characterized a 12-kb mouse genomic DNA fragment containing the entire calreticulin gene and 2.14 kb of the promoter region. The mouse calreticulin gene consists of nine exons and eight introns, and it spans 4.2 kb of genomic DNA. A 1.8-kb fragment of the calreticulin promoter was subcloned into a reporter gene plasmid containing chloramphenicol acetyltransferase. This cons...
متن کاملCalcium regulation of neuronal gene expression.
Plasticity is a remarkable feature of the brain, allowing neuronal structure and function to accommodate to patterns of electrical activity. One component of these long-term changes is the activity-driven induction of new gene expression, which is required for both the long-lasting long-term potentiation of synaptic transmission associated with learning and memory, and the activity dependent su...
متن کاملCalcium-Sensing Receptor Gene: Regulation of Expression
The human calcium-sensing receptor gene (CASR) has 8 exons, and localizes to chromosome 3q. Exons 1A and 1B encode alternative 5'-untranslated regions (UTRs) that splice to exon 2 encoding the AUG initiation codon. Exons 2-7 encode the CaSR protein of 1078 amino acids. Promoter P1 has TATA and CCAAT boxes upstream of exon 1A, and promoter P2 has Sp1/3 motifs at the start site of exon 1B. Exon 1...
متن کاملCalcium-dependent regulation of calcium efflux by the cardiac sodium/calcium exchanger.
Allosteric regulation by cytosolic Ca2+ of Na(+)/Ca2+ exchange activity in the Ca2+ efflux mode has received little attention because it has been technically difficult to distinguish between the roles of Ca2+ as allosteric activator and transport substrate. In this study, we used transfected Chinese hamster ovary cells to compare the Ca2+ efflux activities in nontransfected cells and in cells e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Genome Biology
سال: 2001
ISSN: 1465-6906
DOI: 10.1186/gb-spotlight-20010409-01